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What are Cell-Free and Dynamic TDD?

• All APs (BSs) process 
data to/from all UEs

• Dynamic TDD: each 
AP can independently 
choose to operate in 
UL/DL in each slot

C1
C2
C3



Three Questions

• Cell-free with half-duplex APs and dynamic TDD vs. cell-
free or cellular with full duplex APs?
– Cell free + dynamic TDD = virtual full duplex!

• Pilot design and allocation for cell-free systems?
– All APs are required to estimate all users’ channels

• How to handle the “slowness of the speed of light”?
– Messes up the timing across APs



Some Findings

• HD-CF with many distributed APs and fewer antennas/AP 
is better than FD-massive MIMO cellular (& even FD CF!!)
– Overall, HD-CF has 

• Better rate-region
• Better resilience to interference
• Better 90%ile rate, better fairness

• “Cell-edge” users’ performance improves
– More uniform quality of service across the cell

• Mutually unbiased orthogonal pilots far outperform 
orthogonal pilot reuse

• New timing advance and cyclic prefix duration
optimization is needed for cell-free communications

HD-CF + DTDD vs. FD-Cellular: TCOM 2022: https://arxiv.org/abs/2110.09968
Cell-free under channel aging: https://arxiv.org/abs/2209.02777, 

https://arxiv.org/abs/2104.10404

https://arxiv.org/abs/2110.09968
https://arxiv.org/abs/2209.02777
https://arxiv.org/abs/2104.10404
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New Use-Cases

• Broadband rural communications
– Sub GHz center frequency: wide coverage

– High bandwidth, high velocity support

• The effect of Doppler can be approximated as a 
frequency shift only if and

• Otherwise, delay-scale channel: 

Delay & Scale Spread Wideband Channel

Delay-scale spread channel:

rs(t) =

ZZ
h(⌧,↵)

p
↵s (↵(t � ⌧)) d⌧d↵

time-scale ↵ = c�v

c+v
(v : radial velocity of the scatterer, c : wave sound)

Narrowband channel: if B/fc ⌧ 1 and v ⌧
c

2BT
are satisfied, Doppler

can be approximated by a frequency shift, ⌫ ⇡ (↵� 1) fc ,

rs(t) =

ZZ
h(⌧, ⌫)s (t � ⌧) e j2⇡⌫(t�⌧)

d⌧d⌫

In a wideband channel: either B/fc ⌧ 1 or v ⌧
c

2BT
is violated

Most RF channels are narrowband, UWA channels are wideband
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Transmitter & Channel Model

s(t) =
N�1X

n=0

sBB [n] sinc (B(t � nTs)) e
j2⇡fc t (Transmitted waveform)

rs(t) =

NpX

p=1

hp
p
↵ps(↵p(t � ⌧p)) (Propagation channel)

=

NpX

p=1

hp
p
↵p

N�1X

n=�L

sBB [n] sinc (B(↵pt � ⌧p � nTs)) e
j2⇡fc↵pt�⌧p

r(t) = rs(t) + w(t) (Received signal)
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Orthogonal Delay Scale Space Modulation

• Uses the Mellin Transform

• Mount symbols in the delay-scale domain

https://ece.iisc.ac.in/~cmurthy/Papers/Journal_ODSS_Final_Arun_main.pdf, TSP 2022

𝑃 = 20, 𝜏!"# = 10ms, 𝛼!"# = 1.001

𝜏!"#𝛿𝑓!"# = 0.2 < 0.25
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Fig. 8. ODSS subcarrier spectra. Note that the seven subcarriers, for n =
0, 1, . . . , 6, span a frequency band of 0� 1280 Hz.

Let the duration of the ODSS symbol block be T (q) =
�

W (q) , where � > 1 a factor that accounts for the increase
in length of the filter above the minimum duration of 1

W (q) .
Note that the choice of N = N(q) results in the smallest
ODSS symbol duration that can be used. Then, the spectral
efficiency of the ODSS modulation scheme (in symbols/s/Hz)
is given by

⌘(q) =
Mtot(q)

BT (q)
=

Mtot(q)W (q)

�B
=

Mtot(q)(q � 1)

�(qN(q) � 1)
. (78)

In [49, Sec. IX-F], through a numerical example, we demon-
strate that ODSS can operate with a spectral efficiency close
to one symbol per second per Hertz.

Consider the ODSS subcarrier waveforms, constructed as
discussed in Sec. VI, on a dyadic (q = 2) tiling in the delay-
scale space for a symbol block duration of T = 1.9 seconds
and time-scale indices n = 0, 1, . . . , 6. Fig. 8 shows the
ODSS subcarrier spectra. From these figures, we notice that
the subcarrier bandwidth doubles for every scale increment and
so does the number of time-compressed and shifted subcarriers
at each scale. The ODSS waveforms, thus constructed, are
nearly orthogonal (see [49, Sec. IX-F] for more details).

B. BER Performance
We turn to investigate the communication performance of

the ODSS scheme. We simulate the transmitter and receiver
of three schemes – OFDM, OTFS and ODSS – operating
in a doubly-spread (i.e., time scale and delay spread) chan-
nel. We evaluate the bit error rate (BER) performance as
the signal to noise ratio (SNR) at the receiver is varied.
For fair comparison, we evaluate all three schemes with a
low-complexity subcarrier-by-subcarrier MMSE equalizer at
the receiver. In the case of OFDM, channel equalization is
performed in the frequency domain where the symbols are
mounted. Subcarrier-by-subcarrier MMSE channel equalizer
is implemented in the time-frequency (resp. delay-Doppler)
domain outputs for OTFS (resp. ODSS). The evaluation of the
performance with more computationally expensive message
passing based equalizers is relegated to future work.
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Fig. 9. BER performance of OFDM, OTFS and ODSS schemes using one-
tap MMSE channel equalizers in a wideband delay-scale spread channel with
⌧max = 10 ms, ↵max = 1.001 and P = 20 paths.

We define the SNR as the ratio of the signal and noise
powers at the receiver front-end. The transmitted ODSS signal
waveform, given in (40), can be expressed as

s = GX, (79)

where the columns of the matrix G are the basis waveforms
(compressed and shifted versions of chirplets), X = TiMFx, x
being the vectorized version of the symbols on the 2D-Mellin-
Fourier domain grid. The signal at the receiver, after the trans-
mitted ODSS waveform propagates through a doubly-spread
channel in (64), is given by: rs(t) =

P
P

p=1 hps (↵p(t� ⌧p)).
To compute the SNR at the receiver side, we ignore the

effect of time scale (0.999 < ↵p < 1.001) since we need only
the power of the signal component in the receiver waveform.
The received signal power is given by

Ps = E(|rs(t)|2) = E(
PX

i=1

PX

j=1

h
⇤
i
hjs

⇤(t�⌧i)s(t�⌧j)). (80)

Next, assuming that the channel coefficients {hp ⇠

CN (0, 1) : p = 1, 2, . . . , P} are mutually independent and
independent of the transmitted signal, we find

Ps =
PX

i=1

E(|hi|
2)E|s(t� ⌧i)|

2 = PE|s(t)|2, (81)

where we made use of the fact that power of the signal is not
affected by delay. Therefore, making use of (79), we have

Ps = E{XH
G

H
GX} =

1

FsT
Tr{GE

⇥
XX

H
⇤
G

H
}, (82)

where Fs is the sampling rate. Since the ODSS transform
preserves energy, E

⇥
XX

H
⇤
= E

⇥
xx

H
⇤
= I and therefore

Ps =
1

FsT
Tr{GG

H
}. (83)

We compare the three schemes when they operate at the
same spectral efficiency. For BER performance evaluation, we
consider acoustic communications in the frequency band, [fc�
B/2, fc + B/2], where fc = 12.8 kHz and B = 1.28 kHz.

6

and (d) follows from the fact that multiplicative convolution
in scale domain corresponds to the product of the Mellin
transforms. We see that the sampled version of the Mellin
transform of x(↵), i.e., Ms(�), is the inverse Mellin transform
of the dilatocycled version of x(↵) given by

xd(↵) , (x _�Q) (↵) =
1X

n=�1
Q

n/2
x(Qn

↵). (30)

Thus, sampling in the Mellin domain leads to dilatocycling in
the scale domain. Aliasing due to Mellin domain sampling is
avoided if:

1) the signal in the scale domain has a finite support,
[↵1,↵2], and

2) the dilatocycling ratio, Q, satisfies: Q �
↵2
↵1

.
In the absence of aliasing, xd(↵) equals x(↵) for ↵ 2 [↵1,↵2].

Finally, the discrete Mellin transformation is obtained by
geometric sampling of the finitely supported and dilatocycled
signal xd(↵),↵ 2 [↵1,↵2], in the scale domain. The sampled
version of xd(↵) is given by

xds(↵) , (xd ��q) (↵) =
1X

n=�1
q
n/2

xd(q
n)�(↵�q

n). (31)

It is clear from the discussions above that the Mellin
transform of xds(↵) is the periodized version of Ms(�):

Mxds(�) = M
P

s
(�) , 1

ln q

1X

n=�1
Ms

✓
� �

n

ln q

◆
, (32)

where we require 1
ln q

� �2��1 to avoid aliasing. Substituting
Ms(�) from (28) in (32) and restricting Q = q

N , where N is
a positive integer, we get:

M
P

s
(�) =

1

ln q lnQ

1X

m=�1

1X

n=�1
Mx

✓
m

N ln q

◆

⇥ �

✓
� �

nN +m

ln q

◆
. (33)

Changing m ! k = m + nN and using the definition of
periodized version, we get

M
P

s
(�) =

1

lnQ

1X

k=�1
M

P

x

✓
k

N ln q

◆
�

✓
� �

k

ln q

◆
. (34)

It is now straightforward to show that the discrete Mellin
transform relationship is given by

M
P

x

✓
k

lnQ

◆
=

J+N�1X

n=J

q
n/2

xd(q
n)ej2⇡nk/N , (35)

where J is the integer part of ln↵1/ ln q. The transform length
N = lnQ

ln q
must satisfy the condition

N � (�2 � �1) ln

✓
↵2

↵1

◆
, (36)

to avoid aliasing and allow reconstruction of the scale and
Mellin domain functions from their samples.

Similarly, the discrete inverse Mellin transform is given by

xd(q
n) =

q
�n/2

N

Ki+N�1X

k=Ki

M
P

x

✓
k

lnQ

◆
e
�j2⇡kn/N

, (37)

where Ki is the integer part of �1 lnQ.

V. ODSS COMMUNICATION FOR WIDEBAND CHANNELS

We now turn to developing the ODSS modulation. The
goal of ODSS modulation is to convert a wideband, time-
varying, delay-scale spread channel into a time-independent
channel represented by a complex gain. To this end, we
introduce the 2D ODSS transform (and its inverse) which is
a combination of discrete Fourier transform on one axis (the
delay axis) and inverse Mellin transform on the other (the scale
axis.) The development of ODSS parallels the development of
OTFS in Section III. In the process, we appropriately modify
the two key properties – twisted convolution property and
robust biorthogonality – that were used in the development of
OTFS. We develop the transmitter and receiver of an ODSS
communication system and the propagation of the signal over
wideband time-varying channels in the following subsections,
which is the main contribution of this paper. While we develop
ODSS in a manner similar to the development of OTFS, we
note that the two modulation schemes are distinct and do not
generalize or reduce to each other.

A. ODSS Transmitter
The information bits, after bit-to-symbol mapping, are

multiplexed onto the discrete 2D Mellin-Fourier domain of
size, Mtot =

P
N�1
n=0 M(n), where M(n) = bq

n
c. The

ODSS transform maps the data symbols (e.g., QAM symbols),
{x[k, l] : k = 0, 1, . . . , N � 1, l = 0, 1, . . . ,M(k)}, in the
discrete Mellin-Fourier space to the 2D sequence, X[n,m],
in the scale-delay domain by taking an inverse discrete Mellin
transform along the scale axis (see (37)) and a discrete Fourier
transform along the delay axis, as follows:

X[n,m] =
q
�n/2

N

N�1X

k=0

PM(k)�1
l=0 x[k, l]ej2⇡(

ml
M(k)�

nk
N )

M(k)
,

(38)
where m 2 {0, 1, . . . ,M(n)� 1}, n 2 {0, 1, . . . , N � 1}.

The periodized version of the input (respectively, output)
2D sequence, xp[k, l] (resp. Xp[n,m]), reside on the lat-
tice (reciprocal lattice), ⇤? = {(k��, l�f) : k, l 2 Z}
(resp. ⇤ = {(m�⌧, q

n) : m,n 2 Z}), where �� = 1
N ln q

,
�f , �⌧ are the spacings on the Mellin, Fourier and delay axes,
respectively; �⌧ = 1

W
, W , M�f , and q is the geometric

sampling ratio on the scale axis. The sampling ratio, q, and
discrete Mellin transform length, N , are chosen to satisfy
the conditions in (27) and (36). We may express (38) in the
vectorized form:

X = TiMFx, (39)

where x 2 CMtot⇥1 is the symbol vector obtained by stacking
x[k, l] into a vector, X 2 CMtot⇥1 is the vector obtained
by stacking X[n,m], and TiMF 2 CMtot⇥Mtot is the matrix
representing the 2D ODSS transform in (38).
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Fig. 4. ODSS Modulator Representation

Fig. 5. Wideband Channel Representation

The ODSS modulator converts the 2D time-frequency data,
X[n,m], to a 1D continuous time-series, s(t), given by

s(t) =
N�1X

n=0

M(n)�1X

m=0

X[n,m]qn/2gtx

✓
q
n

✓
t�

m

qnW

◆◆
,

(40)
where gtx(t) is the transmit pulse shaping function of duration
T = 1/W . The ODSS modulation can be viewed as a map
parametrized by the 2D Mellin-Fourier sequence, X[n,m], and
producing s(t) when fed with gtx, i.e., s(t) = ⇧X(gtx(t)):

s(t) =

ZZ
X(⌧,↵)

p
↵gtx(↵(t� ⌧))d⌧d↵, (41)

where

X(⌧,↵) =
N�1X

n=0

M(n)�1X

m=0

X[n,m]�(⌧ �
m

qnW
,↵� q

n). (42)

The above interpretation of the ODSS transform, depicted in
Fig. 4, is helpful in relating the input and output of an ODSS
communication system in the next subsection.

B. ODSS Signal Propagation

The signal, at the ODSS receiver, after propagating through
a wideband delay-scale channel is given by r(t) = rs(t) +
w(t), where rs(t) is as in (1), and w(t) is the additive noise.

We may, equivalently, view the propagation channel as
performing the map ⇧h(s) : s(t) ! rs(t) as shown in Fig. 5.
Next, we introduce the notion of !-convolution to describe
the equivalent of the cascade of the ODSS modulator and the
propagation channel.

The cascade of two delay-scale channels, as shown in Fig. 6,
is equivalent to a single channel, i.e., ⇧h2(⇧h1(s)) = ⇧h(s),
where h(⌧,↵) = h2(⌧,↵) ~! h1(⌧,↵) and the symbol ~!

denotes the !-convolution defined by

h(⌧,↵) =

ZZ
h2(⌧

0
,↵

0)h1

⇣
↵
0(⌧ � ⌧

0),
↵

↵0

⌘
d⌧

0
d↵

0
. (43)

The derivation of the above is provided in the supplementary
material in Sec. IX-A.

In light of the above result, we may write the signal after
propagation through the channel, rs(t), as

rs(t) = ⇧h~!X(gtx) =

ZZ
f(⌧,↵)

p
↵gtx(↵(t� ⌧))d⌧d↵

Fig. 6. !-convolution

where f(⌧,↵) is given by (see Sec. IX-B in the supplementary
material):

f(⌧,↵) =
X

n

X

m

X[n,m]h

✓
⌧ �

m

↵W
,
↵

qn

◆
q
�n

.

The received signal is, therefore, a result of passing the
transmit pulse shaping function through an equivalent channel
parameterized by the !-convolution of the physical channel
and the data dependent 2D delay-scale signal. Fig. 7 depicts
this interpretation. The signal received by the ODSS receiver,
including the additive noise w(t), is given by

r(t) = rs(t) + w(t) = ⇧h~!X(gtx(t)) + w(t). (44)

C. ODSS Receiver
The ODSS receiver performs ODSS demodulation followed

by equalization and symbol decoding. ODSS demodulation is a
two step process: extracting the transmitted scale-delay signal
followed by an inverse ODSS transform. We describe the two
steps in the following two subsections.

1) Scale-delay signal extraction: The scale-delay signal is
extracted by sampling the cross-ambiguity function between
the received signal and the pulse shaping function at the
receiver side. The demodulated scale-delay signal is given by

Ŷ [n,m] = Agrx,r(⌧,↵)|⌧= m
qnW ,↵=qn , (45)

where

Agrx,r(⌧,↵) ,
Z

g
⇤
rx (↵(t� ⌧))

p
↵r(t)dt

= Agrx,rs(⌧,↵) +Agrx,w(⌧,↵). (46)

It is shown in the supplementary material, Sec. IX-C, that

Agrx,rs(⌧,↵) =
X

n

X

m

X[n,m]Hn,m(⌧,↵), (47)

where

Hn,m(⌧,↵) =

ZZ
h(⌧ 00,↵00)

⇥Agrx,gtx

✓
↵
00
q
n

✓
⌧ �

m

↵00qnW
� ⌧

00
◆
,

↵

↵00qn

◆
d⌧

00
d↵

00
.

We assume that
1) the channel response has a finite support, i.e., h(⌧,↵) is

non-zero only for �⌧max  ⌧  ⌧max and 1
↵max

 ↵ 

↵max, where ↵max � 1, and
2) robust bi-orthogonality holds between the transmit and

receive pulses in the following manner. The cross-
ambiguity function vanishes in the neighborhood of all
lattice points ( m

qnW
, q

n) except (0, 1) corresponding to
m = 0 and n = 0. That is, Agrx,gtx(⌧,↵) = 0 for ⌧ 2

8

Fig. 7. Received ODSS signal

( m

qnW
�⌧max,

m

qnW
+⌧max) and ↵ 2 (qn/↵max, q

n
↵max)

except when m = 0 and n = 03.
Then, on sampling at ⌧ = m0

qn0W
and ↵ = q

n0 , we find that
Hn,m[n0,m0] = 0 whenever n 6= n0 or m 6= m0, and

Hn0,m0 [n0,m0] =

ZZ
h(⌧ 0,↵0)

⇥Agrx,gtx

✓
q
n0

✓
m0

qn0W
(↵0

� 1)� ↵
0
⌧
0
◆
,
1

↵0

◆
d⌧

0
d↵

0
.

(48)

so that the noise free part of the extracted scale-delay signal
is given by

Agrx,rs [n0,m0] = Hn0,m0 [n0,m0]X[n0,m0]. (49)

Consider, for example, a channel without delay and Doppler
spread: h(⌧,↵) = h0�(⌧,↵ � 1). In this case, we find:
Hn,m(⌧,↵) = Agrx,gtx

⇣
⌧ �

m

qnW
,

↵

qn

⌘
. Upon sampling at

⌧ = m0
qn0W

and ↵ = q
n0 , due to robust bi-orthogonality,

Hn,m[n0,m0] = 0 whenever n 6= n0 or m 6= m0, and

Hn0,m0 [n0,m0] = h0Agrx,gtx (0, 1) = h0,

so that, in this special case, the noise free part of the extracted
scale-delay signal is given by

Agrx,rs [n0,m0] = h0X[n0,m0]. (50)

Therefore, for an ideal channel without delay and Doppler
spread, the ODSS scheme produces a constant gain for all
signal components in the extracted delay-scale domain.

In general, we find from (49) that the ODSS scheme leads to
an ISI free, time-independent, scalar complex channel gain for
each delay-scale domain output at the receiver. The extracted
delay-scale signal at the ODSS receiver is, therefore, given by

Ŷ [n,m] = Hn,m[n,m]X[n,m] +W [n,m], (51)

where W [n,m] = Agrx,w(⌧,↵)|⌧= m
qnW ,↵=qn is the additive

noise in the discrete delay-scale space.
To avoid ICI, and hence obtain (49), we need to

3Bi-orthogonality cannot be satisfied exactly; our choice of waveforms for
ODSS implementation is discussed in Section VI

1) choose q such that:

q
n
0

↵00qn
/2
�
↵
�1
max,↵max

�
, (52)

8↵
00
2
�
↵
�1
max,↵max

�
, whenever n0

6= n, and
2) choose q and W such that:

↵
00
q
n

✓
m

0

W
�

m

↵00qnW
� ⌧

00
◆

/2 (�⌧max, ⌧max) , (53)

8⌧
00
2 (�⌧max, ⌧max) and ↵

00
2
�
↵
�1
max,↵max

�
, whenever

m
0
6= m.

We first choose the geometric sampling ratio, q, to meet
the condition in (52). If n

0
> n, we want qn

0�n
� ↵max↵

00,
which is satisfied if: 8n0

> n, q
n
0�n

� ↵
2
max, i.e., if q � ↵

2
max.

Similarly, if n
0
< n, we require q

n
0�n

 ↵
00
↵
�1
max which is

met if: 8n0
< n, q

n
0�n

 ↵
�2
max, i.e., if q � ↵

2
max. Therefore,

we may choose
q = ↵

2
max. (54)

Clearly, since ↵max � 1, we have q � 1. Aside, we
also note that the choice of q in (54) together with the
robust bi-orthogonality property renders Agrx,gtx(⌧,↵) = 0,
↵ /2

�
↵
�1
max,↵max

�
.

Next, with q as in (54), we choose W to satisfy the condition
in (53). The condition in (53) is equivalent to

inf
(⌧ 00,↵00)2S

��↵00
↵
2n
maxm

0
�m� ↵

00
↵
2n
max⌧

00
W

�� � W ⌧max,

(55)
whenever m

0
6= m, where S , {(⌧ 00,↵00) : ⌧

00
2

(�⌧max, ⌧max) ,↵00
2

�
↵
�1
max,↵max

�
}. The condition in (55)

places an upper bound on W , as we shall soon see.
First, consider a channel without Doppler, i.e., ↵max = 1,

in which case the condition in (55) specializes to

inf
(⌧ 00,1)2S

|m
0
�m� ⌧

00
W | � W ⌧max, (56)

whenever m
0
6= m. The condition in (56), for a Doppler-free

channel, is satisfied if we choose

W 
1

2⌧max
. (57)

This implies that the duration of the transmitted signal, s(t),
must be larger than 2M⌧max in a Doppler-free channel having
a delay spread of 2⌧max. The choices W = 1

2⌧max
and q = 1

for a Doppler-free channel, and the robust bi-orthogonality
property, render the cross ambiguity Agrx,gtx(⌧, 1) = 0, ⌧ /2

(�⌧max, ⌧max). Notice that, for a Doppler-free channel, with
the choice of q = 1 we must use N = 1 and the ODSS mod-
ulation scheme defaults to asymmetric OFDM (A-OFDM),
which is a scheme that converts delay-spread channels into
a single tap complex channel in the Fourier domain. This
behavior is very similar to the OTFS modulation scheme [5].

Finally, we discuss the choice of W in ODSS modula-
tion for a doubly-spread delay-scale channel that is both
delay-spread and Doppler-distorted. Let m

0
> m. Now, if

the condition in (55) is satisfied by m
0 = m + 1, then

it will be satisfied by every m
0

> m. The expression��↵00
↵
2n
maxm

0
�m� ↵

00
↵
2n
max⌧

00
W

��, in (55), is minimized by
↵
00 = ↵

�1
max and ⌧

00 = ⌧max, when W is such that

https://ece.iisc.ac.in/~cmurthy/Papers/Journal_ODSS_Final_Arun_main.pdf
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Channel model:

Randomly configure the IRS phase angles in every time slot, and 
schedule the user with highest PF metric for transmission

Randomly chosen IRS configuration will be close to the 
beamforming (BF) configuration for at least one of the users

* ArXiv: https://arxiv.org/pdf/2203.06313

file:///D:/View%20article.html


Performance

Rate scaling law:Optimal Random Distribution:



Outlook

• Lots of interesting work to do in B5G/6G systems
– Intelligent reflecting surfaces

– Cell-free systems

– New frequency bands, mmWave, THz, VLC, etc
– New waveforms 

– Joint sensing and communications

– ML-based scheduling, beamforming, subcarrier allocation, security, etc

• Machine learning techniques may play a crucial role
– Mismatched models

– Learning to communicate

– Novel applications with diverse QoS requirements



Summary

• Thank you!

• Questions? Comments?


