Beyond 5G Communications

Chandra R. Murthy
Professor, Dept. of ECE, IISc, Bengaluru
cmurthy@iisc.ac.in

Three Points

Cell-free massive MIMO

New waveforms for B5G/6G

Intelligent Reflecting
Surfaces: phase optimization

Cell-Free Massive MIMO

Joint work with Anubhab Chowdhury anubhabc@iisc.ac.in

What are Cell-Free and Dynamic TDD?

- All APs (BSs) process data to/from all UEs
- Dynamic TDD: each
 AP can independently
 choose to operate in
 UL/DL in each slot

C 1	UL	UL	UL	UL	UL	DL	DL	DL
C2	DL	DL	DL	DL	UL	UL	UL	UL
C3	UL	UL	UL	UL	DL	DL	DL	DL

Three Questions

- Cell-free with half-duplex APs and dynamic TDD vs. cellfree or cellular with full duplex APs?
 - Cell free + dynamic TDD = virtual full duplex!
- Pilot design and allocation for cell-free systems?
 - All APs are required to estimate all users' channels
- How to handle the "slowness of the speed of light"?
 - Messes up the timing across APs

Some Findings

- HD-CF with many distributed APs and fewer antennas/AP
 is better than FD-massive MIMO cellular (& even FD CF!!)
 - Overall, HD-CF has
 - Better rate-region
 - Better resilience to interference
 - Better 90%ile rate, better fairness
- "Cell-edge" users' performance improves
 - More uniform quality of service across the cell
- Mutually unbiased orthogonal pilots far outperform orthogonal pilot reuse
- New timing advance and cyclic prefix duration optimization is needed for cell-free communications

HD-CF + DTDD vs. FD-Cellular: TCOM 2022: https://arxiv.org/abs/2110.09968

Cell-free under channel aging: https://arxiv.org/abs/2209.02777,

https://arxiv.org/abs/2104.10404

New Waveforms for B5G/6G

Joint work with Arunkumar K. P. and Niladri Halder arunkumar@iisc.ac.in, nhalder@iisc.ac.in

New Use-Cases

- Broadband rural communications
 - Sub GHz center frequency: wide coverage
 - High bandwidth, high velocity support
- The effect of Doppler can be approximated as a frequency shift only if $B/f_c \ll 1$ and $v \ll \frac{c}{2BT}$
- Otherwise, delay-scale channel:

Orthogonal Delay Scale Space Modulation

- Uses the Mellin Transform
- Mount symbols in the delay-scale domain

https://ece.iisc.ac.in/~cmurthy/Papers/Journal_ODSS_Final_Arun_main.pdf, TSP 2022

IRS Phase Optimization

Joint work with Yashvanth L., QINF 2021, 2022 yashvanthl@iisc.ac.in

IRS Assisted Opportunistic User Scheduling*

Channel model:

$$h_{k,q}(t) = \sqrt{\beta_{r,k}} \mathbf{h}_{2,k}^H \mathbf{\Theta}_q(t) \mathbf{h}_1 + \sqrt{\beta_{d,k}} h_{d,k}.$$

Randomly configure the IRS phase angles in every time slot, and schedule the user with *highest PF metric* for transmission

 $\mathbf{h}_1 \in \mathbb{C}^{N \times 1}$

$$T_{k}(t+1) = \begin{cases} \left(1 - \frac{1}{t_{c}}\right) T_{k}(t) + \frac{1}{t_{c}} R_{k}(t), & k = k^{*} \\ \left(1 - \frac{1}{t_{c}}\right) T_{k}(t), & k \neq k^{*}. \end{cases}$$

Randomly chosen IRS configuration will be close to the beamforming (BF) configuration for at least one of the users

^{*} ArXiv: https://arxiv.org/pdf/2203.06313

Performance

Optimal Random Distribution:

$$\theta_i = \frac{2\pi(i-1)d}{\lambda}(\sin(\theta_A) + \sin(\phi)); \phi \sim \mathcal{U}[\phi_0, \phi_1]$$

Rate scaling law:

$$\lim_{K \to \infty} \left(R^{(K)} - \mathcal{O}\left(\log_2\left(1 + \frac{\beta P}{\sigma^2} N^2 \ln K\right)\right) \right) = 0.$$

Outlook

- Lots of interesting work to do in B5G/6G systems
 - Intelligent reflecting surfaces
 - Cell-free systems
 - New frequency bands, mmWave, THz, VLC, etc
 - New waveforms
 - Joint sensing and communications
 - ML-based scheduling, beamforming, subcarrier allocation, security, etc
- Machine learning techniques may play a crucial role
 - Mismatched models
 - Learning to communicate
 - Novel applications with diverse QoS requirements

Summary

- Thank you!
- Questions? Comments?

